
Dirichlet Problem

Brian Krummel

January 5, 2016

1 Overview

Today we want to solve the Dirichlet problem. That is, let Ω be a bounded C2 domain in Rn,
L = aijDij + biDi + c be an elliptic operator with coefficients aij, bi, c ∈ C0,µ(Ω) and c ≤ 0 in Ω.
For every f ∈ C0,µ(Ω) and ϕ ∈ C0(∂Ω), we want to solve for u ∈ C0(Ω) ∩ C2,µ(Ω) such that

Lu = f in Ω,

u = ϕ on ∂Ω. (1)

We will solve (1) in the following steps:

1. Solve the Dirichlet problem for the Laplace operator ∆ = D11 + D22 + · · · + Dnn on a ball
B, i.e. solve

∆u = f in B,

u = ϕ on ∂B.

We will mostly handle this later when discussing equations in divergence form.

2. Show that Step 1 implies that we can solve the Dirichlet problem for L on a ball B, i.e. solve

Lu = f in Ω,

u = ϕ on ∂Ω.

3. Use the Perron method of subsolutions and supersolutions, which assumes Step 2, to con-
struct a solution u ∈ C2,µ(Ω) to Lu = f in Ω.

4. Use barriers to show that the solution constructed in Step 3 satisfies u ∈ C0(Ω) with u = ϕ
on ∂Ω.

Recall that we have the following theorems and estimates in this situation:

1. By the maximum principle, the solution to the Dirichlet problem (1) is unique.

2. By the maximum principle, if v, w ∈ C0(Ω) ∩ C2(Ω) such that Lv ≥ Lw in Ω and v ≤ w on
∂Ω, then v ≤ w in Ω.
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3. A priori estimate: if u ∈ C0(Ω) ∩ C2(Ω) solves the Dirichlet problem (1), then

|u|0;Ω ≤ |ϕ|0;∂Ω + C|f |0;Ω

for some constant C = C(n, L,Ω) ∈ (0,∞).

4. Interior Schauder estimate: if u ∈ C2,µ(Ω) solves Lu = f in Ω, then

|u|2,µ;Ω′ ≤ C(|u|0;Ω + |f |0,µ;Ω)

for all Ω′ ⊂⊂ Ω for some constant C = C(n, L,Ω′,Ω) ∈ (0,∞).

5. Global Schauder estimate: if u ∈ C2,µ(Ω) solves the Dirichlet problem (1) and ϕ ∈ C2,µ(Ω),
then

|u|2,µ;Ω ≤ C(|f |0,µ;Ω + |ϕ|2,µ;Ω)

for some constant C = C(n, L,Ω) ∈ (0,∞).

2 Step 1: Dirichlet problem for the Laplacian

Let B be a ball in Rn. I claim that for every f, ϕ ∈ C∞(B) there exists a solution u ∈ C∞(B) to
the Dirichlet problem

∆u = f in B,

u = ϕ on ∂B. (2)

The proof of this follows (independently) from the existence and regularity theory for elliptic
equations in divergence form, so I shall delay the proof until we discuss elliptic equations in
divergence form. (The rough idea is that (2) is the Dirichlet problem for an equation in divergence
form, so we can solve it if f, ϕ ∈ L2(B) by the existence theory for such Dirichlet problems. Now
if all the derivatives of f and ϕ are in L2(B), as is the case if f and ϕ are smooth, then all the
derivatives of u are in L2 by the regularity theory for equations in divergence form. But that means
there exists a solution u in C∞(B)!) Now suppose we wanted to solve (2) for f ∈ C0,µ(B) and
ϕ ∈ C0(∂B). By scaling, we can suppose B = B1(0). Recall that we can extend f to f ∈ C0,µ

c (Rn)
with |f |0,µ;Rn ≤ C|f |0,µ;B for some constant C = C(n, µ) ∈ (0,∞). Note that we can extend ϕ to
be a continuous function on Rn by letting ϕ(x) = χ(|x|)ϕ(x/|x|), where χ ∈ C∞([0,∞)) satisfies
χ(r) = 0 for r ∈ [0, 1/4] and χ(r) = 1 for r ≥ 1/2. Using convolution, we can approximate f and
ϕ by fk ∈ C∞(B) and ϕk ∈ C∞(B) such that

fk → f and ϕk → ϕ uniformly on B as k →∞

and
sup
B
|fk| ≤ sup

B
|f |, [fk]µ;B ≤ [f ]µ;Rn , sup

B
|ϕk| ≤ sup

B
|ϕ|. (3)

That is, let φ1 ∈ C∞(Rn) such that φ1 = 0 on Rn \ B1(0), φ1 ≥ 0, and
∫
B1(0)

φ1 = 1. Let

φσ(x) = σ−nφ1(x/σ) for all x ∈ Rn and σ > 0. Note that φσ = 0 on Rn \ Bσ(0), φσ ≥ 0, and∫
Bσ(0)

φσ = 1. For σk ↓ 0, let

fk(x) =

∫
Rn
f(x− y)φσk(y)dy and ϕk(x) =

∫
Rn
ϕ(x− y)φσk(y)dy.
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To see that fk → f uniformly, let ε > 0. Since f is uniformly continuous on B, there is a δ > 0
such that if |x−y| < δ then |f(x)−f(y)| < ε. Thus for k large enough that σk < δ and for x ∈ B,

|fk(x)− f(x)| ≤
∫
Bσ(0)

|f(x− y)− f(y)|φσk(y)dy <

∫
Bσ(0)

εφσk(y)dy = ε.

Similarly ϕk → ϕ uniformly in B. We compute for x ∈ B,

|fk(x)| ≤
∫
Rn
|f(x− y)|φσk(y)dy ≤ sup

B
|f |
∫
Rn
εφσk(y)dy = sup

B
|f |

and similarly supB |ϕk| ≤ supB |ϕ|. We also compute for x, x′ ∈ B,

|fk(x)−fk(x′)| ≤
∫
Rn
|f(x−y)−f(x′−y)|φσk(y)dy ≤ [f ]µ;Rn|x−x′|µ

∫
Rn
φσk(y)dy = [f ]µ;Rn|x−x′|µ.

Now recall that since fk and ϕk are smooth, there exists uk ∈ C∞(B) such that

∆uk = fk in B,

uk = ϕk on ∂B.

By the a priori estimates,

sup
B
|uk − ul| ≤ sup

∂B
|ϕk − ϕl|+ C sup

∂B
|fk − fl|

for some constant C = C(n, µ, L) ∈ (0,∞). Since ϕk → ϕ and fk → f uniformly in B as k →∞,
uk is Cauchy in C0(B) and thus uk converges to some u ∈ C0(B) uniformly in B. By the interior
Schauder estimates and (3),

|uk|2,µ;Bρ(0) ≤ C(|ϕ|0;B + |f |0,µ;B)

for some constant C = C(n, µ, L, ρ) ∈ (0,∞). Thus, after passing to a subsequence, uk → u in
C2 on compact sets in B and u ∈ C2,µ(B). Therefore u ∈ C0(B) ∩ C2,µ(B) solves the Dirichlet
problem (2).

Note that if additionally ϕ ∈ C2,µ(B), then we can extend to ϕ ∈ C2,µ
c (Rn) with |ϕ|2,µ;Rn ≤

C|ϕ|2,µ;B for some constant C = C(n, µ) ∈ (0,∞) and for ϕk as defined above using convolution,

|ϕk|2,µ;B ≤ |ϕ|2,µ;Rn .

Thus by the global Schauder estimates,

|uk|2,µ;B ≤ C(|ϕ|2,µ;B + |f |0,µ;B)

for some constant C = C(n, µ, L) ∈ (0,∞). Thus, after passing to a subsequence, uk → u in
C2(B) and u ∈ C2,µ(B).
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3 Step 2: Solution for L implies solution for ∆

Theorem 1. Let Ω be a bounded C2,µ domain in Rn. Let

L = aijDij + biDi + c

be an elliptic operator with coefficients aij, bi, c ∈ C0,µ(Ω) and c ≤ 0 in Ω. The Dirichlet problem

∆u = f in Ω,

u = ϕ on ∂Ω, (4)

has a (unique) solution u ∈ C2,µ(Ω) for all f ∈ C0,µ(Ω) and ϕ ∈ C2,µ(Ω) if and only if the Dirichlet
problem

Lu = f in Ω,

u = ϕ on ∂Ω, (5)

has a (unique) solution u ∈ C2,µ(Ω) for all f ∈ C0,µ(Ω) and ϕ ∈ C2,µ(Ω)

Remark 1. Using an approximation argument similar to the argument in Section 2, we can show
that the theorem holds when ϕ ∈ C0(∂Ω) instead of ϕ ∈ C2,µ(Ω). That is, (4) has a solution
u ∈ C0(Ω) ∩ C2,µ(Ω) for every f ∈ C0,µ(Ω) and ϕ ∈ C0(∂Ω) if and only if (5) has a solution
u ∈ C0(Ω) ∩ C2,µ(Ω) for every f ∈ C0,µ(Ω) and ϕ ∈ C0(∂Ω).

Proof of Theorem 1. First observe that by letting v = u− ϕ, the Dirichlet problem Lu = f in Ω
and u = ϕ on ∂Ω is equivalent to the Dirichlet problem Lv = f −Lϕ in Ω and v = 0 on ∂Ω. Thus
it suffices to show that ∆u = f in Ω and u = 0 in ∂Ω has a unique solution u ∈ C2,µ(Ω) for all
f ∈ C0,µ(Ω) if and only if Lu = f in Ω and u = 0 in ∂Ω has a unique solution u ∈ C2,µ(Ω) for all
f ∈ C0,µ(Ω).

Consider the one-parameter family of bounded linear operators Lt, t ∈ [0, 1], given by

Lt = (1− t)∆ + tL : C2,µ
0 (Ω)→ C0,µ(Ω),

where C2,µ
0 (Ω) = {u ∈ C2,µ(Ω) : u = 0 on ∂Ω}. To show that the Dirichlet problem

Ltu = f in Ω,

u = 0 on ∂Ω, (6)

has a (unique) solution u ∈ C2,µ(Ω) for all f ∈ C0,µ(Ω) is equivalent to showing the bounded
linear operator Lt is invertible.

Suppose for some s ∈ [0, 1], the Dirichlet problem

Lsu = f in Ω,

u = 0 on ∂Ω,

has a (unique) solution u ∈ C2,µ(Ω) for all f ∈ C0,µ(Ω). Equivalently, suppose Ls is invertible.
We can rewrite (6) as

u = L−1
s f + L−1

s (Ls − Lt)u in Ω,

u = 0 on ∂Ω.
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Thus solving (6) is equivalent to showing the map

T = L−1
s f + L−1

s (Ls − Lt) : C2,µ
0 (Ω)→ C2,µ

0 (Ω)

has a fixed point. We will show this using the contraction mapping principle. Observe that for
u, v ∈ C2,µ

0 (Ω),

Tu− Tv = L−1
s (Ls − Lt)(u− v) = (s− t)L−1

s (L−∆)(u− v).

Hence
|Tu− Tv|2,µ;Ω ≤ |s− t|‖L−1

s ‖(‖L‖+ ‖∆‖)|u− v|2,µ;Ω.

By the global Schauder estimates, |u|2,µ;Ω ≤ C|Lsu|0,µ;Ω for all u ∈ C2,µ
0 (Ω) for some constant C =

C(n,Ω, L) ∈ (0,∞) independent of s, or equivalently |L−1
s f |2,µ;Ω ≤ C|f |0,µ;Ω for all f ∈ C0,µ(Ω),

or equivalently ‖L−1
s ‖ ≤ C. Hence for u, v ∈ C2,µ

0 (Ω),

|Tu− Tv|2,µ;Ω ≤ |s− t|C|u− v|2,µ;Ω

for some constant C = C(n,Ω, L) ∈ (0,∞) independent of s. Thus if |s − t| < 1/2C, T is a
contraction mapping and thus has a unique fixed point. Therefore we conclude Lt is invertible if
|s− t| < 1/2C.

Now partition the interval [0, 1] into 0 = t0 < t1 < t2 < · · · < tN−1 < tN = 1 where
tj − tj−1 < 1/4C for all j = 1, 2, . . . , N . If the Dirichlet Problem (4) has a unique solution
u ∈ C2,µ(Ω) for all f ∈ C0,µ(Ω), then by the L0 is invertible. By the discussion above, Lt is
invertible for all t ∈ [0, t1], and thus Lt is invertible for all t ∈ [t1, t2], and thus Lt is invertible
for all t ∈ [t2, t3],..., Lt is invertible for all t ∈ [tN−1, 1]. That is, L1 is invertible and thus the
Dirichlet Problem (5) has a unique solution u ∈ C2,µ(Ω) for all f ∈ C0,µ(Ω). That is, if Dirichlet
Problem (4) has unique solutions then Dirichlet Problem (5) has unique solutions. Similarly we
can probe the converse that if Dirichlet Problem (5) has unique solutions then Dirichlet Problem
(4) has unique solutions.

Note that there is an alternative way to finish the proof. Consider the set

S = {t ∈ [0, 1] : L−1
t exists}.

We have already shown using the Schauder estimates and contraction mapping principle that S
is (relatively) open in [0, 1]. Using the Schauder estimates you can show that S is closed in [0, 1].
But [0, 1] is connected, thus either S = ∅ or S = [0, 1], i.e. L−1

t exists for no t ∈ [0, 1] or L−1
t exists

for all t ∈ [0, 1]. Hence the existence of ∆−1 is equivalent to the existence of L−1, i.e. the Dirichlet
Problem (4) has unique solutions if and only if Dirichlet Problem (5) has unique solutions.

4 Subfunctions and superfunctions

Let Ω be a bounded domain in Rn and consider the differential equation

Lu = aijDiju+ biDiu+ cu = f in Ω

where L is an elliptic operator with coefficients aij, bi, c ∈ C0,µ(Ω) for µ ∈ (0, 1) and c ≤ 0 in Ω
and f ∈ C0,µ(Ω). Recall the following definition:
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Definition 1. Let u ∈ C2(Ω). u is a subsolution if Lu ≥ f in Ω. u is a supersolution if Lu ≤ f
in Ω.

We can generalize the concepts of subsolutions and supersolutions to functions in C0(Ω) via
the maximum principle:

Definition 2. Let u ∈ C0(Ω). u is a subsolution if for every ball B ⊂⊂ Ω and w ∈ C0(B)∩C2(B)
such that Lw = f in B and u ≤ w on ∂B, u ≤ w in B. u is a supersolution if for every ball
B ⊂⊂ Ω and w ∈ C0(B) ∩ C2(B) such that Lw = f in B and w ≤ u on ∂B, w ≤ u in B.

We claim that if u ∈ C2(Ω), Definitions 1 and 2 are equivalent. Let’s check this for subsolutions,
the case of supersolutions is similar. It is obvious by the maximum principle that if u is a
subsolution in the sense of Definition 1, then u is a subsolution in the sense of Definition 2.
Suppose u is a subsolution in the sense of Definition 2 and Lu(y) < f(y) for some y ∈ Ω. Then
by continuity, for some δ > 0, Lu < f in Bδ(y). Let w ∈ C2,µ(Bδ(y)) be the solution to Lw = f
in Bδ(y) and w = u on ∂Bδ(y). Then by the maximum principle, w < u in Bδ(y), contradicting
u being a subsolution by Definition 2. Since Definitions 1 and 2 are equivalent for functions in
C2(Ω), we will now simply talk about subsolutions and supersolutions.

Now we claim that subsolutions and supersolutions in the sense of Definition 2 satisfy a max-
imum principle:

Lemma 1. Suppose u, v ∈ C0(Ω) such that u is a subsolution and v is a supersolution (in the
sense of Definition 2) and u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. Let M = supΩ(u − v) > 0. Since u − v ≤ 0 < M on ∂Ω, v − w is not constant on Ω, so
we can choose x0 ∈ Ω and R > 0 such that u(x0)− v(x0) = M and u− v 6≡ M on ∂BR(x0). Let
ū, v̄ ∈ C0(BR(x0))∩C2(BR(x0)) such that Lū = Lv̄ = f in BR(x0), ū = u on ∂BR(x0), and v̄ = v
on ∂BR(x0). By the definition of subsolution and supersolution, u ≤ ū in BR(x0) and v ≥ v̄ in
BR(x0). Thus, applying the maximum principle to the function ū − v̄ such that L(ū − v̄) = 0 in
BR(x0),

M = (u− v)(x0) ≤ (ū− v̄)(x0) ≤ sup
∂BR(x0)

(ū− v̄) = sup
∂BR(x0)

(u− v) ≤M,

and thus we must have equality throughout. In particular (ū − v̄)(x0) = sup∂BR(x0)(ū − v̄), i.e.
ū− v̄ has an interior maximum and thus by the strong maximum principle ū− v̄ ≡M in BR(x0).
Thus u− v ≡M on ∂BR(x0), contrary to assumption. Therefore u ≤ v in Ω.

It now follows by an identical proof using the maximum principle that we have the a priori
estimates on subsolutions: if u ∈ C0(Ω) is a subsolution, then

sup
Ω
u ≤ sup

∂Ω
u+ + C sup

Ω
|f |

for some constant C = C(n, L,Ω) ∈ (0,∞).

Lemma 2. Suppose u ∈ C0(Ω) is a subsolution and B be a ball such that B ⊂⊂ Ω. We define the
lift of u to be the function U ∈ C0(Ω) defined by letting U on B be the solution in C0(B)∩C2(B)
to LU = f in B and U = u on ∂B and letting U = u on Ω \B. The lift U is a subsolution.
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Proof. Let B′ be a ball such that B′ ⊂⊂ Ω and let w ∈ C0(B′) ∩ C2(B′) such that Lw = f in B′

and U ≤ w on ∂B′. We want to show that U ≤ w in B′. Since u is a subsolution and u ≤ U ≤ w
on ∂B′, u ≤ w in B′. In particular, since U = u on B′ \ B, U ≤ w on B′ \ B. Since LU = f in
B ∩ B′, U ≤ w on B ∩ ∂B′ and U = u ≤ w on ∂B ∩ B′, by the maximum principle U ≤ w in
B ∩B′.

Lemma 3. Suppose u, v ∈ C0(Ω) are both subsolutions. Then max{u, v} is a subsolution.

Proof. Let B be a ball such that B ⊂⊂ Ω and let w ∈ C0(B) ∩ C2(B) such that Lw = f in B
and max{u, v} ≤ w on ∂B. Since u is a subsolution and u ≤ max{u, v} ≤ w on ∂B, u ≤ w in B.
Similarly v ≤ w in B. Therefore max{u, v} ≤ w in B.

5 Step 3: Perron Method

Now we are go to apply subsolutions and supersolutions to solve the Dirichlet problem

Lu = f in Ω,

u = ϕ on ∂Ω,

where Ω, L, and f are as given above and ϕ ∈ C0(∂Ω).

Definition 3. Let u ∈ C0(Ω). u is a subfunction if u is a subsolution and u ≤ ϕ on ∂Ω. u is a
superfunction if u is a supersolution and u ≥ ϕ on ∂Ω.

Theorem 2. Define u : Ω→ R by

u(x) = sup{v(x) : v ∈ C0(Ω) is a subfunction }

for all x ∈ Ω. Then u ∈ C2(Ω) and Lu = f in Ω.

Remark 2. Note that there does indeed exist at least one subfunction. Assume without loss of
generality that Ω ⊂ {0 ≤ x1 ≤ d} for some d > 0. Recall the definition of λ as the positive
function on Ω such that aij(x)ξiξj ≥ λ(x)|ξ|2 for all x ∈ Ω and ξ ∈ Rn. By the proof of the a
priori estimates it is readily seen that

v(x) = − inf
∂Ω
|ϕ| − (eαd − eαx1) sup

Ω

|f |
λ

(7)

is a subfunction provided α ≥ 1 is sufficiently large (depending on the coefficients of L). Moreover,
from the a priori estimates the subfunctions are uniformly bounded above. Therefore u in the
statement of Theorem 2 is well-defined and finite on Ω.

Remark 3. Observe that Theorem 2 does not claim that u = ϕ on ∂Ω. However, if there is a
solution ũ ∈ C0(Ω) ∩ C2(Ω) to the Dirichlet problem Lũ = f in Ω and ũ = ϕ on ∂Ω, then u = ũ.
In particular, by the definition of u and the fact that ũ is a subfunction, ũ ≤ u in Ω. Since ũ is
also a superfunction, v ≤ ũ in Ω for all subfunctions v ∈ C0(Ω) by the maximum principle, so
u ≤ ũ in Ω.
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Proof of Theorem 2. Fix x ∈ Ω and let R > 0 such that BR(x) ⊂⊂ Ω. There is a sequence of
subfunctions vj ∈ C0(Ω) such that vj(x) → u(x) as j → ∞. By replacing vj with the max of vj
and the subfunction in (7), we may assume that vj are uniformly bounded below. Let Vj ∈ C0(Ω)
be the lift of vj on BR(x0) so that LVj = f in BR(x), Vj = vj on ∂BR(x), and Vj = vj on Ω\BR(x).
Recall that Vj is a subfunction and observe that limj→∞ Vj(x) = u(x). By the lower bound on vj,
the a priori estimates, and the local Schauder estimates,

|Vj|2,µ;BR/2(x) ≤ C(sup
∂Ω

ϕ+ + |f |0,µ;Ω)

for some constant C = C(n, µ, L) ∈ (0,∞). Thus by Arzela-Ascoli, after passing to a subsequence,
Vj converges in C2(BR/2(x)) to some function V ∈ C2(BR/2(x)) such that LV = f in BR/2(x),
V ≤ u in BR/2(x), and V (x) = u(x).

We claim that V = U in BR/16(x). Suppose V (z) < U(z) for some z ∈ BR/16(x). By
the definition of U(z), there is a subfunction w ∈ C0(Ω) such that V (z) < w(z) ≤ u(z). Let
wj = max{Vj, w}. Let Wj ∈ C0(Ω) be the lift of wj on BR/4(z) so that LWj = f in BR/4(z),
Wj = wj on ∂BR/4(z), and Wj = wj on Ω\BR/4(z). Observe that Wj is a subfunction and observe
that limj→∞Wj(x) = u(x) and V (z) < limj→∞Wj(z) ≤ u(z). By the lower bound on vj, the a
priori estimates, and the local Schauder estimates,

|Wj|2,µ;BR/8(z) ≤ C(sup
∂Ω

ϕ+ + |f |0,µ;Ω)

for some constant C = C(n, µ, L) ∈ (0,∞). Thus by Arzela-Ascoli, after passing to a subsequence,
Wj converges in C2(BR/8(z)) to some function W ∈ C2(BR/8(z)) such that LW = f in BR/8(z),
V ≤ W ≤ u in BR/8(z), V (x) = W (x) = u(x), and V (z) < W (x) ≤ u(x). Since LV = LW = f
in BR/8(z) and V (x) = W (x) at x ∈ BR/8(z), by the strong maximum principle V = W in
BR/8(z), contradicting the fact that V (z) < W (z). Therefore V = u in BR/16(x). Thus u = V ∈
C2(BR/16(x)) with Lu(x) = LV (x) = f(x).

6 Step 4: Boundary continuity and barriers

Definition 4. Let Ω be a bounded domain and ϕ ∈ C0(∂Ω). A sequence of functions {w+
i } in

C0(Ω) is an upper barrier) at ξ ∈ ∂Ω if

(i) w+
i is a superfunction relative to ϕ in Ω, i.e. w+

i is a supersolution and ϕ ≤ w+
i on ∂Ω, and

(ii) w+
i (ξ)→ ϕ(ξ) as i→∞.

A sequence of functions {w−i } in C0(Ω) is an lower barrier) in Ω relative to L, f , and ϕ at ξ ∈ ∂Ω
if

(i) w−i is a subfunction relative to ϕ in Ω, i.e. w+
i is a subsolution and w−i ≤ ϕ on ∂Ω, and

(ii) w−i (ξ)→ ϕ(ξ) as i→∞.

Definition 5. Let Ω be a bounded domain and ϕ ∈ C0(∂Ω). Let M− and M+ be real numbers
such that

M− ≤ u ≤M+
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for any solution u ∈ C0(Ω) ∩ C2(Ω) to the Dirichlet problem Lu = f in Ω and u = ϕ on ∂Ω. For
example, since c ≤ 0 in Ω we can take

M+ = −M− = sup
∂Ω
|ϕ|+ C sup

Ω
|f | (8)

for an appropriate constant C = C(n, L,Ω) ∈ (0,∞). A sequence of functions {w+
i } in C0(Ω) is

an local upper barrier) at ξ ∈ ∂Ω if there is an open neighborhood N of ξ such that

(i) w+
i is a supersolution in N ∩ Ω,

(ii) w+
i ≥ ϕ on N ∩ ∂Ω,

(iii) w+
i ≥M+ on ∂N ∩ Ω, and

(iv) w+
i (ξ)→ ϕ(ξ) as i→∞.

A sequence of functions {w−i } in C0(Ω) is an local lower barrier) at ξ ∈ ∂Ω if there is an open
neighborhood N of ξ such that

(i) w−i is a subsolution in N ∩ Ω,

(ii) w−i ≤ ϕ on N ∩ ∂Ω,

(iii) w−i ≤M− on ∂N ∩ Ω, and

(iv) w−i (ξ)→ ϕ(ξ) as i→∞.

Note that if we can construct a function m+ ∈ C2,µ(Ω) such that

(a) Lm+ ≤ f in Ω,

(b) m+ ≥ ϕ on ∂Ω, and

(c) m+ ≤M+ on Ω,

then any local upper barrier {w+
i } can be extended to an upper barrier {w̄+

i } on Ω defined by

w̄+
i (x) =

{
min{w+

i ,m
+} in N ∩ Ω,

m+ in Ω \ N .

Observe that in the special case that L = ∆ and f = 0 in Ω, we can choose m+(x) = M+ for all
x ∈ Ω. This doesn’t quite work in general. But if Ω is a bounded domain with Ω and we choose
M+ by (8), we can construct such a function m+ (exercise for the reader).

Theorem 3. Let u be the solution to Lu = f in Ω constructed in Lemma 2. If there exists local
upper and lower barriers at ξ ∈ ∂Ω, then u(x)→ ϕ(ξ) as x→ ξ.

9



Proof. Let w+
i be upper barriers at ξ and w−i be lower barriers at ξ, which exist since local upper

and lower barriers exist. By the maximum principle,

w−i ≤ u ≤ w+
i in Ω. (9)

For every ε > 0, for i sufficiently large,

ϕ(ξ)− ε < w−i (ξ) and w+
i (ξ) ≤ ϕ(ξ) + ε.

By continuity, for some δ > 0 (depending on ε and i),

ϕ(ξ)− ε < w−i (x) and w+
i (ξ) ≤ ϕ(ξ) + ε for x ∈ Ω ∩Bδ(ξ). (10)

Thus by (9) and (10),

ϕ(ξ)− ε ≤ u(x) ≤ ϕ(ξ) + ε for x ∈ Ω ∩Bδ(ξ).

Therefore u(x)→ ϕ(ξ) as x→ ξ.

Consider our case where L = aijDij +biDi+c is an elliptic operator with coefficients aij, bi, c ∈
C0(Ω) and c ≤ 0 in Ω and f is a bounded function on Ω. Then the upper and lower barriers are
determined by a single function w ∈ C0(Ω) ∩ C2(Ω), simply called a barrier, such that

(a) Lw ≤ −1 in Ω and

(b) w > 0 on ∂Ω \ {ξ} and w(ξ) = 0.

Now for εi ↓ 0, let
w+
i = ϕ(ξ) + εi + kiw, w−i = ϕ(ξ)− εi − kiw

on Ω for some ki > 0. Now if ki ≥ supΩ |f − cϕ(ξ)|,

Lw+
i = cϕ(ξ) + cεi + kiLw ≤ cϕ(ξ) + 0− ki ≤ f

in Ω and similarly Lw−i ≥ f in Ω. For some δi > 0, |ϕ(x)− ϕ(ξ)| < εi for all x ∈ ∂Ω ∩Bδi(ξ), so

w−i ≤ ϕ ≤ w+
i on ∂Ω ∩Bδi(ξ).

Since w > 0 on ∂Ω \Bδi(ξ), we can choose ki large enough that

w−i ≤ ϕ ≤ w+
i on ∂Ω.

Finally note that since εi ↓ 0 and w(ξ) = 0, w+
i (ξ) → ϕ(ξ) and w−i (ξ) → ϕ(ξ) as i → ∞.

Therefore {w+
i } are upper barriers and {w−i } are lower barriers. Note that we could also determine

local upper and lower barriers by a single function w ∈ C0(Ω ∩ N ) ∩ C2(Ω ∩ N ) for some open
neighborhood N of ξ, where w is simply called a local barrier, by

(a) Lw ≤ −1 in Ω ∩N and

(b) w > 0 on ∂(Ω ∩N ) \ {ξ} and w(ξ) = 0.
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Again for εi ↓ 0, we let

w+
i = ϕ(ξ) + εi + kiw, w−i = ϕ(ξ)− εi − kiw

on Ω∩N for some ki > 0. We can show as before that Lw−i ≥ f ≥ Lw+
i in Ω∩N and w−i ≤ ϕ ≤ w+

i

on N ∩ ∂Ω if ki is chosen to be sufficiently large and that w±i (ξ)→ ϕ(ξ) as i→∞. Clearly if we
choose ki sufficiently large, then w−i ≤M− and w+

i ≥M+ on ∂N ∩ Ω.
We claim that if Ω satisfies the exterior sphere condition at ξ, i.e. there is a ball BR(y) such

that BR(y) ∩ Ω = {ξ}, then we can construct such a local barrier w. Let

w(x) = τ(R−σ − |x− y|−σ)

on Rn for τ, σ > 0 to be determined. We compute

L(R−σ−|x− y|−σ) ≤ |x− y|−σ−2

(
−σ(σ + 2)

n∑
i,j=1

aij(xi − yi)(xj − yj)
|x− y|2

+ σ
n∑
i=1

(aii + bi(xi − yi))

)

which is negative and bounded away from zero provided σ is sufficiently large depending on n, L,
R, and τ . Thus for σ and τ sufficiently large, Lw ≤ −1. Therefore w is a barrier. Thus we have
shown

Theorem 4. Suppose Ω satisfies the exterior sphere condition (for example if Ω is a C2 domain).
Let L = aijDij + biDi + c be strictly elliptic with bounded coefficients aij, bi, c ∈ C0,µ(Ω) and c ≤ 0.
Let f be bounded and in C0,µ(Ω) and ϕ ∈ C0(∂Ω). Then the Dirichlet problem

Lu = f in Ω,

u = ϕ on ∂Ω,

has a unique solution u ∈ C0(Ω) ∩ C2,µ(Ω).

7 Solutions in C2,µ(Ω)

Theorem 5. Suppose Ω is a C2,µ domain. Let L = aijDij + biDi + c be strictly elliptic with
coefficients aij, bi, c ∈ C0,µ(Ω) and c ≤ 0. Let f ∈ C0,µ(Ω) and ϕ ∈ C2,µ(Ω). Then the Dirichlet
problem

Lu = f in Ω,

u = ϕ on ∂Ω,

has a unique solution u ∈ C2,µ(Ω).

Proof. Recall that the Dirichlet problem has a unique solution u ∈ C0(Ω)∩C2,µ(Ω). It remains to
show that u is in C2,µ up to the boundary of Ω. In fact, we can show that for every point ξ ∈ ∂Ω,
there is an open neighborhood D of ξ in Rn such that u ∈ C2,µ(D∩Ω). Since Ω is a C2,µ domain,
there is a C2,µ diffeomorphism Ψ : D ∩ Ω→ B1(0) for some neighborhood D of ξ such that

Ψ(D ∩ ∂Ω) = T ⊂ ∂B1(0).
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Under the transformation Ψ, Lu = f in Ω and u = ϕ on ∂Ω transforms to

L̃ũ = f̃ in B1(0),

ũ = ϕ̃ on T,

where ũ = u ◦ Ψ−1, L̃ is strictly elliptic, the coefficients of L̃ are in C0,µ(B1(0)), f̃ = f ◦ Ψ−1 ∈
C0,µ(B1(0)), and ϕ̃ = ϕ ◦Ψ−1 ∈ C2,µ(B1(0)). Note that w = ũ is a solution to

L̃v = f̃ in B1(0),

w = ũ on ∂B1(0). (11)

Let ρ > 0 such that ∂B1(0) ∩ Bρ(ξ) ⊂ T . Consider χ = ũ|∂B1(0) ∈ C0(∂B1(0)) ∩ C2,µ(T ).

Let χj ∈ C∞(B1(0)) such that χj → ũ uniformly on ∂B1(0), |χj|2,µ,∂B1(0) ≤ C|ũ|2,µ,∂B1(0), and
|χj|2,µ,∂B1(0)∩Bρ(y) ≤ C|ũ|2,µ,∂B1(0)∩Bρ(y) for some constant C = C(n, µ) ∈ (0,∞). By the solution

to the Dirichlet problem on a ball, there exists solutions uj ∈ C2,µ(B1(0)) to

L̃uj = f̃ in B1(0),

uj = χj on ∂B1(0).

We claim that by the maximum principle, interior Schauder estimates, and Schauder estimates at
the boundary near ξ, uj converges to some function v uniformly on B1(0), in C2 on compact subsets

of B1(0), and in C2(Ω ∩Bρ/2(ξ)) such that v ∈ C0(B1(0))∩C2mu(B1(0))∩C2mu(B1(0) ∩Bρ/2(y))
and w = v solves (11). By the maximum principle,

sup
B1(0)

|vj − vk| ≤ sup
∂B1(0)

|χj − χk|,

so since χj → ũ uniformly on ∂B1(0), vj is Cauchy in C0(B1(0)) and converges to some v ∈
C0(B1(0)) as j → ∞ with v = ũ on ∂B1(0). By the interior Schauder estimates and the a priori
estimates,

|vj|2,µ;Bρ(0) ≤ C(|χj|0;∂B1(0) + |f̃ |0,µ;B1(0))

≤ C(|ũ|0;∂B1(0) + |f̃ |0,µ;B1(0))

for some constant C = C(n, µ, L̃, ρ) ∈ (0,∞), so after passing to a subsequence vj → v in C2

on compact subsets of B1(0) and v ∈ C2(B1(0)) with Lv = f̃ in B1(0). By the local Schauder
estimates at the boundary and the a priori estimates,

|vj|2,µ;B1(0)∩Bρ/2(ξ) ≤ C(|χj|0;∂B1(0) + |f̃ |0,µ;B1(0) + |χj|2,µ;∂B1(0)∩Bρ(ξ))

≤ C(|ũ|0;∂B1(0) + |f̃ |0,µ;B1(0) + |ϕ̃|2,µ;∂B1(0)∩Bρ(ξ))

for some constant C = C(n, µ, L̃, ρ) ∈ (0,∞), so after passing to a subsequence vj → v in

C2(B1(0) ∩Bρ/2(ξ)) and v ∈ C2,µ(B1(0) ∩Bρ/2(ξ)). Clearly,

L̃v = f̃ in B1(0),

v = ũ on ∂B1(0),
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but by the uniqueness of solutions to the Dirichlet problem v ≡ ũ on B1(0). Therefore ũ ∈
C2,µ(B1(0) ∪ T ). Thus u ∈ C2,µ(D ∩ Ω) as claimed and it follows that u ∈ C2,µ(Ω).

Then by the uniqueness of solutions to the Dirichlet problem this will imply that ũ = v and
thus ũ ∈ C2,µ(B1(0) ∩Bρ/2(ξ)). It follows that u is C2,µ up to the boundary of Ω in a neighborhood
of ξ. Since ξ is arbitrary, u ∈ C2,µ(Ω).

8 Fredholm alternative

Theorem 6 (Fredholm alternative). Suppose Ω is a C2,µ domain. Let L = aijDij + biDi + c be
strictly elliptic with coefficients aij, bi, c ∈ C0,µ(Ω). Either

(a) the homogeneous problem, Lu = 0 in Ω, u = 0 on ∂Ω, has only the trivial solution, in which
case the inhomogeneous problem, Lu = f in Ω, u = ϕ on ∂Ω, has a unique solution in
u ∈ C2,µ(Ω) for all f ∈ C0,µ(Ω) and ϕ ∈ C2,µ(Ω), or

(b) the space of solutions to the homogeneous problem forms a nontrivial finite-dimensional
subspace of C2,µ(Ω).

Proof. We can suppose ϕ = 0 since the Dirichlet problem Lu = f in Ω, u = ϕ on ∂Ω is equivalent
to the Dirichlet problem Lv = f − Lϕ in Ω, v = 0 on ∂Ω, where v = u− ϕ. For σ ≥ supΩ c, let

Lσ = L− σ : C20,µ
0 (Ω)→ C0,µ(Ω),

where
C20,µ

0 (Ω) = {u ∈ C2,µ(Ω) : u = 0 on ∂Ω}.

We have shown that the Dirichlet problem Lσu = f in Ω, u = 0 on ∂Ω has a unique solution u
and thus the inverse map L−1

σ : C0,µ(Ω)→ B exists. Moveover, by the global Schauder estimates
and a priori estimates (Corollary 2 in Lecture 7), L−1

σ is a bounded linear map. By Arzela-Ascoli,

L−1
σ : C0,µ(Ω)→ C20,µ

0 (Ω) ↪→ C0,µ(Ω)

is a compact mapping. We know Lu = f in Ω is equivalent to

u+ σL−1
σ u = L−1

σ f in Ω.

Note in particular that if u ∈ C0,µ(Ω) satisfies u+σL−1
σ u = L−1

σ f , then u = L−1
σ (f−σu) ∈ C2,µ

0 (Ω)
so Lu = f in Ω makes sense and holds true. Ny standard functional analysis regarding compact
operators, (1 + σL−1

σ ) is either invertible, in which case we get (a), or (1 + σL−1
σ ) has a nontrivial

finite-dimensional kernel, in which case we get (b).

References: Gilbarg and Trudinger, Section 6.3 (Dirichlet problem in general) and Section 2.8
(Perron method and barriers for harmonic functions).
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